Enhanced Reinforcement Learning Based Privacy Preserving Circuit Construction and Routing in an Onion Routing Network

S. Shakila, and Gopinath Ganapathy

Abstract—Onion Routing is the process of providing anonymity to a packet by rerouting it through various intermediate routers in an encrypted format. Hence the major requirement of an onion routing network seems to be security. One of the other major hurdles that is overlooked is the slow nature of the transmission when an onion routing network is used. The current paper provides an effective solution that not only provides secure transmission, but also construct routes that can perform faster transmissions. Reinforcement Learning method is used to provide adequate exploration and exploitation during the path selection process. It also uses user defined QoS parameters and their corresponding weightage values as a base for router selection. Probability based router selection is carried out along with an exploration functionality, that maintains diversity in the obtained solutions.

Keywords—AHP, Circuit Construction, Cumulative Distribution Function, Onion Routing, Reinforcement Learning, Weighted Sum method.

I. INTRODUCTION

Anonymity is the property of being unidentifiable within a group. Several protocols have been developed that allow one to communicate anonymously over the internet. The Tor protocol shows high degree of anonymity than other protocols. A lot of research has been carried out to measure anonymity and to guard against potential attacks. Due to the wide use of Internet based applications, Hyper Text Transfer Protocol (HTTP) traffic comprises an overwhelming majority of the connections and it is unclear whether TOR can facilitate interactive web browsing [18]. The Selection of appropriate routes is one of the major functionalities of a TOR network. The complication of this mechanism is that it also requires two other basic functionalities for successful operation; the generated route should be the fastest and the most unpredictable. Achieving both these functionalities to the fullest is not feasible. Further, speed has always been a trade off for the need of security. Hence a TOR network always remains a slow and secure routing structure. Any packet that is passed through a TOR network has always been found to reach the destination taking at least 3x or 4x times of the transmission time taken by a normal transmission. Practical usage delays are not mostly tolerated by end users. Hence this proves as a serious downside, which discourages users from using the onion routing system. The remainder of this paper is structured as follows; Section II presents the related works, Section III explains our approach of secure and fast circuit construction, Section IV presents the results and discusses them and Section V concludes the study.

II. RELATED WORK

A trust based routing methodology for onion networks that guards specifically against interference attacks has been presented in [8]. The problems in conventional routing methods have always been the fact that if the intruders have prior knowledge about the trust degrees present in the system, then anonymity becomes compromised. Hence the paper [8] provides a trust degree based methodology, that helps defeat the interference attacks. A similar trust based approach that uses trust graphs is proposed in [14]. Interference attack is the major attack being carried out on any system using trust based communications. This attack has been thwarted by [14] using restricted user knowledge. It uses three unique properties for performing routing namely, group trust is maintained, that verifies the trust levels assigned by users, an adaptive trust propagation system is maintained, which derives the global trust from the trust graphs and it works on a completely decentralized environment. Paper [15] uses a similar latency graph based privacy preserving mechanism that exhibits resilience link based attacks. It also aims to reduce the delays caused in the onion routing system. A similar paper that aims at reducing the delays in an onion routing system by measuring the latencies and other parameters is described in [16].

A forward secrecy based non-interactive onion routing approach was proposed in [9]. This method achieves its required functionality in a fully non-interactive manner without requiring communications from the router or users. In addition to this, [9] also provides faster key management with a comparable computation cost. The forward secure public key proposed in [10] was utilized in [9]. Identity based forward secure encryption is provided by applying the generic paradigm proposed by [11] to the Hierarchical Identity based encryption approach [12]. A provably secure and practical onion routing method is
proposed in [13]. Analysis has been carried out in the current protocol deployed in onion networks and it was observed that the current protocol still lacks security guarantees that are the major requirements of the next generation onion routing networks. Paper [13] provides the properties required for an effective OR system.

III. REINFORCEMENT LEARNING BASED PRIVACY PRESERVING CIRCUIT CONSTRUCTION AND ROUTING IN AN OR NETWORK

Security and faster transmissions have been the mandatory components in a TOR network. Security has been given major thrust, while the speed of data transmission has always been assigned lower importance. The major downside in a TOR network that had been often felt is high transmission time. Due to the additional overhead of increased packet transmission and encryption, the time taken by any packet transmitted through a TOR network always increases. The process of providing a mechanism that reduces the time taken for transmission through a TOR network is simple, but problem arises when security is lowered as a tradeoff for time. This becomes unacceptable. Considering the QoS parameters related to transmission while discovering a route, provides an effective solution for determining the best route, and by incorporating the information about network traffic, the route that has been selected can be considered much more reliable. This scheme is used as the basic logic for route determination by the authors.

Three basic components of a TOR network are the entry nodes, exit nodes and other nodes. Entry nodes perform the most basic and the most important task in a TOR network; determining the level of encryption. Packets sent through a TOR network require different levels of encryption based on their importance. The process of encrypting the packets depending on the requirement is performed by the entry level nodes. These nodes receive packets in their true form without any encryptions; hence the entry nodes are high performance and highly secure nodes that cannot be compromised easily. The exit nodes are the ones that strip off the final layer of encryption, hence they are also made reliable and secure. The remaining nodes perform the intermediary process of stripping off the encryption layers and forwarding the packet to the next node.

The encryption level for a packet is determined by the application transmitting the packet [1]. Higher level of encryptions are provided to throughput sensitive applications, while encryption levels are reduced as the transmission type comes down to delay sensitive applications. This mechanism is clearly explained in the previous work of the authors [1].

The method of secure route selection begins during the initial setup of the TOR network. The components (nodes) of the network and their distances are recorded initially with respect to every router. A TOR system in general does not perform route selection; instead, it performs the process of next node selection. This mechanism eliminates the possibility of backtracking. The routing algorithm is distributed to all the routers in the network.

Algorithm:

1. Setup the network nodes(router) and construct the graph
2. Find the neighbor set N for each node
3. For every packet encountered, perform the following
 a. If the current node is not an exit node then
 i. Calculate the weighted sum of each node in the network using success rate, failure rate and other QoS parameters using (2)
 ii. Determine the probability of selection of each node using (3)
 iii. Find the destination router D, using CDF
 iv. Repeat (iii) until the termination condition is reached (exploration depletion or Di not in EL)
 v. Add D to EL if it is not in EL
 b. If the current node is the exit node, then strip off the final layer of encryption and forward the packet to the destination

When a packet is encountered, it triggers the process of route selection in a node (after adding encryption layers, if the node is an entry node). According to this method, determining a route not only depends upon the distance between the current node and the destination node, it also depends on the QoS parameters related to transmission. The quality parameters used in this paper are jitter, delay and the level of network traffic currently encountered in the network edge. Further, the system also considers the success and failure rates of the current node under examination. Each of these parameters is provided weights ranging from -10 to 10. Since different networks are constructed with different functionalities in mind, a hard coded value will not be an appropriate option. Hence this process is performed by the network administrator before deployment. All the routers in the network work with the same parameter weights, hence this is a onetime process. The method of Analytic Hierarchy Processing (AHP) is used to perform weight assignments. This can be performed using pairwise comparison [2] or using direct weight assignments [2].

In pairwise comparison, each pair of parameters is provided to the user and the ranking is provided with respect to each other. This method can be used if the number of parameters is very large or if the user is unsure about the ratings of parameters in the individual sense. The comparison matrix depicting the weights set W is as follows.

\[
W = \begin{bmatrix}
\frac{w_1}{w_1} & \frac{w_2}{w_1} & \frac{w_3}{w_1} & \cdots & \frac{w_n}{w_1} \\
\frac{w_1}{w_2} & \frac{w_1}{w_2} & \frac{w_3}{w_2} & \cdots & \frac{w_n}{w_2} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
\frac{w_1}{w_n} & \frac{w_2}{w_n} & \frac{w_3}{w_n} & \cdots & \frac{w_n}{w_n}
\end{bmatrix} = \begin{bmatrix}
1 & s_{12} & s_{13} & \cdots & s_{1n} \\
1 & 1 & s_{23} & \cdots & s_{2n} \\
\vdots & \vdots & \ddots & \ddots & \vdots \\
1 & 1 & 1 & \cdots & 1
\end{bmatrix}
\]

(1)

Where \(W/W_y\) compares the parameters x with respect to y. \(S_{xy}\) represents the comparison score of x when compared with
In direct user assigned weights, as the name implies, the user assigns weight values for attributes directly.

After the assignment of weights and the quality requirements for parameters, the weighted sum method [3,4] is used to calculate the importance value of each router (WS_r)

$$WS_r = \sum_{i=1}^{n} W_i \cdot N_{r_i}$$

(2)

Where W_i represents the weight of the property i and N_{r_i} represents the normalized value of the i^{th} attribute for the router r. Normalization is performed on the attribute to make certain that irregularities are removed and operations in certain values do not cause huge deviations in the result. The values for parameters obtained from the router are normalized in the range 0.1 to 1. 0 is avoided such that even if a value is the lowest in its scale, it will also have some influence on the result. The only factor that can influence the outcome (result) to a large extent are the weight values.

The next step involves in finding the probability of routers to facilitate the selection process.

$$P_r = \frac{WS_r}{\sum_{j=1}^{n} WS_j}$$

(3)

The probability of selecting a router P_r is determined by dividing the weighted sum of the router WS_r by the sum of all the weighted sum values.

The selection process is carried out using the Cumulative Distribution Function (CDF) [5].

The cumulative distribution function of a real-valued random variable X is the function given by

$$F_X(x) = P(X \leq x),$$

(4)

When the right-hand side represents the probability that the random variable X takes on a value less than or equal to x. The probability that X lies in the semi-closed interval (a,b), where $a<b$, is therefore

$$P(a < X \leq b) = F_X(b) - F_X(a).$$

(5)

IV. RESULTS AND DISCUSSION

Analysis was carried out using 75 nodes. The network is maintained as a complete graph i.e. all the nodes are connected to all the other nodes, in order to increase the destination choices and to determine the system’s behavior during exploration and exploitation phases. 10595 packets were transferred over the network and the node that has been selected for transmission, transmission result (successful or retransmitted) and the time taken for transmission were recorded. The properties used for analysis in the current simulation are success rate of the router, failure rate of the router, network traffic, bandwidth, jitter and delay. Every router is made to maintain the success and failure rates of all its neighbors, along with the bandwidth details. Network traffic is computed dynamically during transmission and delay is calculated using the difference between the packet sending and packet receiving time.

![Fig. 1 Success and Failure rates of the nodes](image)

The success and failure rates of the nodes in the network are depicted in Fig 1. It can be observed that the success rate graph is always above the failure graph, which proves that the deployed system performs efficiently in terms of selection, by maintaining low failure rates.
Node usage during the simulation process is depicted in Fig 2. It can be observed that on an average all nodes have similar usage patterns. This explains the efficient functioning of the exploration and exploitation modules. Very few best nodes are available in the network that are exploited, while all the other nodes are used on an average scale.

Time taken during the selection process is depicted in Fig 3. Since each node has been used multiple times during the transmission process, the average time taken for each node is considered for plotting. It can be inferred from the figure that time taken for 95% of the available nodes is the same. It can also be observed that the time taken for the nodes with highest success rates is lesser than the others.

Fig. 4 depicts the comparison between the success, failure and usage of the nodes. It can be observed that the usage graph indicates proportionality to the success and failure graphs. As the success rate increases, the usage level also increases and vice versa.

V. Conclusion

The paper presents a novel Reinforcement Learning method that uses probability and a variant of Tabu List (EL) to carry out the learning process. The process is to be carried out by every router in the network, hence the complexity of the algorithm is kept to the minimum $O(n)$. This value is
actually due to the fact that our network considers a complete graph. This value would actually be the maximum degree of the router being used. Usage of EL provides the system with enhanced security to the packet being transferred.

REFERENCES

