Study the Effect of Using Offset Strip Fin Heat Exchanger on the Efficiency of Combined Gas Turbine with Air Bottom Cycle

Rida Ali Hmouda and Hussain Alrubaie

Abstract—The main objective of this paper is to research on the effectiveness of the development of the industrial gas turbine, which works in from a simple cycle to gas turbines stations that work in a Combined Joule/Joule Cycle (CJJC) (gas / air). This study utilizes the computation of the basic thermal design of the simple cycle gas turbines in order to identify the economical indicators for the thermal process of producing electricity. The computation results show that the depression of the thermal economical indicators of these stations (ηach=36%) gave rise on both the temperature of the exhaust gases (Tg=528.4°C) and the quantity of the heat contained in the turbine’s exhaust discarded in the atmosphere (11.17MW).

To solve these negative problems of the basic thermal design that would increase the quantity of the electrical energy generation and to save the contamination at the lower level. So in this paper the heat exchanger has been designed, which has been considered an important element in the process of utilizing the thermal energy of exhaust gases. The study on the effectiveness of the Combined Joule/Joule Cycle in industrial power plants, Where his study has been designed Offset Strip-Fin heat exchanger has been established by using the mathematical model which was resulted to a thermal efficiency increase up to (ηach=43.5%).

Keywords— Combined Joule/Joule Cycle, Gas turbine, Offset Strip-Fin heat exchanger.

I. INTRODUCTION

The last decade has witnessed remarkable improvements in industrial gas turbine size and performance and the coming years are holding the promise of even more progress in these fields [1]. Due to ever increasing costs of fossil fuels and awareness of the impact on the environment of burning fossil fuels, it is sought to decrease fossil fuel consumption. Various technological developments are employed to lower the fuel consumption and emission of industrial gas turbine units, such as high temperature materials and advanced combustion technologies. However all of modern gas turbine units operate in a simple cycle, i.e., all the heat contained in the turbine’s exhaust is discarded to the atmosphere. This lost heat represents anywhere from 65-72% of the fuel energy, depending on the unit’s thermal efficiency. Converting this residual heat into power could provide in excess of clean electrical power of much-needed capacity to electrical power grid. Combined gas and steam turbines cycle looks like logical approach in raising industrial plant efficiency, but this concept is inefficient in areas suffering from water scarcity. The Recently Propose a new design for Combined cycle valid for use in industrial gas turbine. Joule Joule cycles can be combined by an air-gas Offset Strip Fin heat exchanger the exhaust of the primary gas turbine is sent to a heat exchanger, which, in turn, heats the air in the bottom cycle. Air is expanded in the turbine to generate additional power. In comparison to the Joule/Rankin combined cycle, this design does not require bulky steam equipment (boiler, steam turbine, condenser), or a water processing unit [2].

II. THE THERMAL ANALYSIS OF THE SIMPLE CYCLE GAS TURBINE

In present study has been using the following method to procedure thermal analysis of gas turbine at design properties and operating conditions for this unit, Where this method relies on procedure thermal calculation of the basic parts of the gas turbine, in relative terms (per 1 kg of air the inside the compressor). Also been dealing with the turbine blades cooling system, as a separate cycle to extend the cooling air inside the gas turbine [3].

A. Calculate Thermal Economic Indicators for the Gas Turbine Simple Cycle

Air consumption rate of gas turbine (ton/hr), calculated as:

$$G_a = \frac{3600 \times N_{e}^{GT}}{He \times \eta_M \times \eta_G}$$ \hspace{1cm} (1)

Where N_e^{GT} power output (MW), H_e is the specific work for gas turbine (kJ/kg), η_M is the mechanical efficiency and η_G is the efficiency of the generator.

The Fuel consumption rate of the gas turbine is calculated as follows:

$$BGT = G_t \times G_a$$ \hspace{1cm} (2)

Where G_t is The relative rate of fuel consumption for the gas turbine (kg Fuel/kg Air).
The thermal efficiency is calculated as follows:

\[
\eta_s = \frac{3600 \times N_e^{GT}}{BGT \times Q_{CV}}
\]

(3)

Where \(Q_{CV} = 44300\) kJ/kg (heating value for the fuel used).

B. Combined Joule/Joule With Air Bottoming Cycle

Like the steam bottoming cycle in a combined cycle, the air bottoming cycle (ABC) may utilize heat rejected from a gas turbine [4]. A general flow sheet diagram of the CJCJ is shown in Fig. 1. In the bottom cycle the ambient air (1) is drawn through a filter and is compressed in the air compressor (AC). The compressed air (2) is heated in Offset Strip-Fin heat exchanger before it enters (3) air turbine. In the turbine the air is expanded while shaft work is generated. After the turbine the air is exhausted to a stack. The work generated in the turbine is sufficient to drive the compressor and a generator (G), (CC) denotes the combustion chamber and (GCO) The relative amount of air drawn from the compressor to cool the turbine blades [3].

\[\text{Fig. 1 Combined Joule/Joule with Air Bottoming Cycle.}\]

C. Calculate Thermal Economic Indicators for the Combined Joule/Joule Cycle

The thermal efficiency of the CJCJ is calculated as follows:

\[
\eta_c = \frac{3600 \times N_e}{BGT \times Q_{CV}}
\]

(4)

Where \(N_e\) (MW) the electrical power produced for CJCJ and calculated from the following relationship:

\[
N_e = N_e^{GT} + N_e^{AT}
\]

(5)

Where \(N_e^{AT}\) (MW) the electrical power produced for ABC and calculated from the following relationship:

\[
N_e^{AT} = \frac{He_A \times \eta_M \times \eta_G \times G_a}{3600}
\]

(6)

Where \(H_{ed}\) is the specific work for ABC (kJ/kg).

III. THE OFFSET STRIP FIN HEAT EXCHANGER

In this paper the heat exchanger has been designed, which is considered an important element in the process of exploitation of thermal energy of the exhaust gases, where has been studied and designed cross flow heat exchanger from type of plate fin. The plate fin heat exchanger (PFHE) are a form of compact heat exchanger consisting of a stack of alternate flat plates called “parting sheets” and fin, brazed together as a block. Plate fin heat exchanger are widely used in various industrial applications because of their compactness. For many years, PFHEs have been widely used for gas separation in cryogenic applications and for aircraft cooling duties. In aerospace applications weight saving is of paramount importance [5].

Salient features of PFHE are discussed by Shah and include the following [6,7]:

1. Plate fin surface are commonly used in gas-to-gas exchanger applications.
2. The passage height on each side could be easily varied.
3. The maximum operating temperatures are limited by the type of fin-to-plate bonding and the materials employed. PFHE have been designed from cryogenic operating temperatures to about 800°C.

The heat of the gas turbine exhaust is recovered and transferred to the compressed air between the compressor and turbine of the ABC. For this application there are two different types of heat exchanger that can be used: regenerators and recuperators. In a recuperator, heat is transferred through walls that separate the flows. In a regenerator, the heat transfer surface is alternately exposed to the two flows [4].

In the present work it was chosen a recuperator because of the following advantages [8].

1. Ease of manufacture.
2. Stationary nature.
3. Uniform temperature distribution and hence less thermal shock.

There are many forms of fins that can be used with PFHE including offset strip, plain triangular, plain rectangular, wavy, louver, perforated, or pin fin geometries. In this paper has been study offset strip fin type.

The offset strip fin (OSF) is commonly used geometry in PFHE. The OSF is designated as the serrated fin [5]. The fin has a rectangular cross section; it is cut into small strips of length \(L_f\), and every alternate strip is offset by about 50% of the fin pitch in the transverse direction as schematically shown in Fig. 2. Fin spacing \(SS\), fin height \(H\), fin thickness \(\delta_f\), and strip length in the flow direction \(L_f\) are the major variables of OSF fins. OSF geometry is characterized by high heat transfer area per unit volume, and high heat transfer coefficients. The heat transfer mechanism in OSFs is described by Joshi and Webb [9]. And is as follows. The heat transfer enhancement is obtained by periodic growth of laminar boundary layers on the
fin length, and their dissipation in the fin wakes. This enhancement is accompanied by an increase in pressure drop.

The thermal energy required, so this problem was solved for the method of studying another alternative.

The second alternative: a study and design cross flow heat exchanger with three passes. And so with the aim of increasing the value of log mean temperature difference (LMTD). But the problem here is difficulty in obtaining an equation or a chart to calculate the log mean temperature difference for the heat exchanger. Where the type of flow is a cross flow exchanger with three passes for each stream and both streams unmixed. To solve this problem we divide the heat exchanger into three exchangers, each of which represents a pass intersects it the hot and cold fluid perpendicular as shown in Fig. 4.

![Fig. 2. Geometrical description to OSFs core a heat exchanger.](image)

![Fig. 3. The heat exchanger with a single pass.](image)

![Fig. 4. The heat exchanger with three passes.](image)

A. The Analysis Method of Heat Exchanger

Is known as that both of hot and cold fluids it flows during cross flow heat exchanger and both streams unmixed. In this study different alternatives have been proposed for the design of the heat exchanger and the selection of a suitable alternative between these alternatives, which are as follows:

- The first alternative: a study and design cross flow heat exchanger with single pass for each stream as shown in Fig. 3.

- The second alternative: a study and design cross flow heat exchanger with three passes. And so with the aim of increasing the value of log mean temperature difference (LMTD). But the problem here is difficulty in obtaining an equation or a chart to calculate the log mean temperature difference for the heat exchanger. Where the type of flow is a cross flow exchanger with three passes for each stream and both streams unmixed. To solve this problem we divide the heat exchanger into three exchangers, each of which represents a pass intersects it the hot and cold fluid perpendicular as shown in Fig. 4.

B. The Thermal Analysis of the heat exchanger

The purpose of thermal analysis of the heat exchanger is to determine the relationships for calculating overall heat transfer coefficient a heat exchanger and the expression of the thermal energy that has transferred from the hot to the cold fluids, depending on the surface area of the heat exchanger, and the log mean temperature difference. So this purpose can be achieved by thermal energy balance equation for or both hot (exhaust gases) and cold (air) fluids.

The Log mean temperature difference \((K) \) is calculated as follows [11]:

\[
\Delta T_m = \frac{P \times A_z^{0.282} \times (T_{HI} - T_{CI})}{\left[\frac{L_m}{R \times S^{0.22} + Ln(1 - P \times R)} \right]^{1.282}}
\]

\[P = \frac{\Delta T_{min}}{T_{HI} - T_{CI}} \], \(A_z = \frac{W_{min}}{W_{max}} \), \(R = \frac{1}{A_z} \)

Where \(T_{HI} (K) \) the exhaust gases temperature, \(T_C (K) \) the air temperature, the index I, O denotes inlet and outlet respectively, \(W_{min, max} (kW/K) \) minimum and maximum heat capacity rate respectively, \(S \), dimensionless factor and represents the number of heat transfer units, and is calculated from the following equation:

\[
ER = 1 - \exp\left(\frac{-0.78}{S A_z} - 1\right) \times S^{0.22}
\]

\[
ER = 1 - \exp\left(\exp\left(\frac{-0.78}{S A_z} - 1\right) \times S^{0.22}\right)
\]
Where ER Effectiveness of the heat exchanger.

From the geometrical details shown in Fig. 2. Can we get the free flow areas for exhaust gases and air as [12]:

Calculate the free flow area for exhaust gases (m^2) as:

$$A_{fH} = (H_H - \delta_F)(1 - N_{H} \times \delta_F) \times L_{H} \times N_{F_H}$$

$$N_{H} = \frac{N_{F_H}}{L_{H}} \quad N_{F_H} = \frac{L_{H}}{S_{H}}$$

Where H_H height of the fin (m), N_{H} fin frequency, fins per meter, L_{H} heat exchanger length (m), S_{H} pitch distribution fins in the layer that passes through it exhaust gases, N_{F_H} number of fins in the layer that passes through it exhaust gases.

Calculate the free flow area for air (m^2) as:

$$A_{fC} = (H_C - \delta_F)(1 - N_{C} \times \delta_F) \times L_{C} \times N_{F_C}$$

$$N_{C} = \frac{N_{F_C}}{L_{C}} \quad N_{F_C} = \frac{L_{C}}{S_{C}}$$

Where H_C height of the fin (m), N_{C} fin frequency, fins per meter, L_{C} heat exchanger length (m), S_{C} pitch distribution fins in the layer that passes through it air, N_{F_C} number of fins in the layer that passes through it air.

The heat transfer areas (m^2) for the exhaust gases can be obtained as given below:

$$A_H = L_{H} \times L_{C} \times N_{F_H} \times [1 + 2 \times N_{C} 	imes (H_H - \delta_F)]$$

Where N_{F_H} number of layers that passes through it exhaust gases.

Similarly heat transfer areas (m^2) for the air can be obtained as given below:

$$A_C = L_{H} \times L_{C} \times N_{F_C} \times [1 + 2 \times N_{C} \times (H_C - \delta_F)]$$

Where N_{F_C} number of layers that passes through it air.

The heat transfer area through the wall between the layers of the heat exchanger is calculated from the following relation:

$$A_W = L_{H} \times L_{C} \times N_{F_H}$$

Equivalent hydraulic diameter of the heat exchanger is calculated as follows [9]:

$$D_{hH} = \frac{2(2SS_H - \delta_F \times H_H - \delta_F) \times (H_H - \delta_F) \times \delta_F}{2SS_H + (H_H - \delta_F) \times \delta_F}$$

$$D_{hC} = \frac{2(2SS_C - \delta_F \times H_C - \delta_F) \times (H_C - \delta_F) \times \delta_F}{2SS_C + (H_C - \delta_F) \times \delta_F}$$

Where:

$$SS_H = \frac{1}{N_{H}} - \delta_F \quad SS_C = \frac{1}{N_{C}} - \delta_F$$

The overall heat transfer coefficient through the heat exchanger is calculated as following [12]:

The heat transfer coefficient ($W/m^2.K$) for exhaust gases can be obtained in terms of Colburn J factor as following:

$$a_{H} = \frac{J_H \times G_{H} \times c_{PH}}{A_{fH} \times (Pr_{JH})^{\frac{1}{3}}}$$

Where Colburn (J_H) factor for the exhaust gases is calculated as follows [9]:

$$J_H = 0.21\times(Re_{JH})^{0.4} \times \frac{f_{H}}{D_{hH}} - 0.24 \times \left(\frac{\delta_F}{D_{hH}}\right)^{0.02}$$

Where Pr_{JH} Prandtl number, Re_{JH} Reynolds number.

The heat transfer coefficient ($W/m^2.K$) for air can be obtained in terms of Colburn J factor as following:

$$a_{C} = \frac{J_C \times G_{C} \times c_{PC}}{A_{fC} \times (Pr_{JC})^{\frac{1}{3}}}$$

Where Colburn (J_C) factor for the air is calculated as [9]:

$$J_C = 0.21\times(Re_{JC})^{0.4} \times \frac{f_{C}}{D_{hC}} - 0.24 \times \left(\frac{\delta_F}{D_{hC}}\right)^{0.02}$$

Where Pr_{JC} Prandtl number, Re_{JC} Reynolds number.

Thus, the overall heat transfer coefficient is calculated as:

$$\frac{1}{U_{A}} = \frac{1}{a_{H} \times A_{H}} + \frac{1}{\delta_{W} \times A_{W}} + \frac{1}{a_{C} \times A_{C}}$$

Where δ_{W} wall thickness (m), λ thermal conductivity of the wall metal ($W/m.K$).

The thermal energy (kW) exchanged within the heat exchanger is calculated from the following relation:

$$Q = U_{A} \times N \times T_{m}$$

The pressure loss coefficient from exhaust gases side is calculated as follows:

$$\zeta_{H} = \zeta_{Gas} = \frac{\Delta P_{TH}}{P_{H}}$$

$$\Delta P_{TH} = \Delta P_{FH} + \Delta P_{CH}$$

Pressure drop (Pa) during passages for exhaust gases is calculated as [9]:

$$\Delta P_{FH} = \frac{\Delta f_{H} \times L_{C} \times \rho \times U^2_{FH}}{2D_{hH}}$$

$$f_{H} = 1.12\times(Re_{JH})^{0.36} \times \frac{L_{H}}{D_{hH}} - 0.65 \times \left(\frac{\delta_F}{D_{hH}}\right)^{0.17}$$

$$\Delta P_{CH} = 0.5\times(\rho \times U^2_{H})$$

The pressure loss coefficient from air side is calculated as:
Pressure drop during passages for air is calculated as \[\Delta p = \frac{\Delta P_{FC} + \Delta P_{CC}}{\rho_c} \] (28)

(27)

\[\Delta p_{FC} = \frac{\pi d^4}{128} \frac{U_{FC}^2}{H_{FC}} \]

(29)

\[f_C = 1.12 \left(\frac{d_F}{d_H} \right) - 0.36 \left(\frac{L_f}{d_h} \right) - 0.65 \left(\frac{P_{FC}}{d_h} \right) - 0.17 \]

(30)

\[\Delta p_{CC} = 0.5 (\rho_{CO} U_{CO}^2 - \rho_{CI} U_{CI}^2) \]

(31)

Where \(\rho_h, \rho_c \) density of the fluid (kg/m\(^3\)) at the mean temperature of both gases and air respectively, \(\rho_{HI}, \rho_{HO}, \rho_{CI}, \rho_{CO} \) density the entry and exit of gases and air to the heat exchanger respectively, \(U_{HI}, U_{HO}, U_{CI}, U_{CO} \) velocity the entry and exit of gases and air to the heat exchanger respectively, \(P_{HI}, P_{HO}, P_C, P_{2A} \) gas pressure, \(P_C \) or \(P_{2A} \) (Pa) air Pressure, \(\Delta P_{CH}, \Delta P_{CC} \) (Pa) Pressure drop due to Change in velocity for gases and air respectively.

IV. RESULTS AND DISCUSSION

From the mathematical model of essential design for simple cycle gas turbine, has been studied the effect of turbine inlet temperature (TIT), and the impact of the pressure ratio in the compressor (PR\(_C\)) on each of the thermal efficiency and specific work. Fig. 5. Shows that increasing the TIT leads to an increase in the thermal efficiency of the cycle due to increased specific work and increase the electrical power produced for ABC, Which in turn contributes to increase the thermal efficiency of the combined cycle. It also notes from the Fig. 6. That increasing the PR\(_{CA}\) leads to increasing the thermal efficiency of the cycle due to increased specific work. After that with the increase in the PR\(_{CA}\), we note a decrease in thermal efficiency due to raise the temperature of the air that comes out of the compressor. The reason for this is due to the decrease air density and increased its velocity, leading to increase the pressure loss from the air side of the heat exchanger.

Fig. 6. Optimization of the overall pressure ratio in ABC.

Fig. 6. Also shows the optimum value of the pressure ratio for bottom cycle, which gives the highest efficiency for the combined cycle as is clear from the Fig. 6. that this value is (PR\(_{CA}\)=4.5) at all the values of the heat exchanger effectiveness. As can be seen from the Fig. 6. that values efficiency dropped at (PR\(_{CA}\)>4.5 , ER=85%) due to the decline in the value of the log mean temperature difference of the heat exchanger. The maximum value of the efficiency have been achieved at (\(\eta_C=43.5\% \), TIT=1200°C , PR\(_C\)=15, ER=85%).

Fig. 7. Shows the effect of the effectiveness of the heat exchanger on both thermal efficiency and specific work for topping gas turbine cycle, as is clear from the Fig. 7. That the highest value for the efficiency of the cycle be at (\(\eta_C=43.5\% \), ER=85%), while the highest value for the specific work be at (He=326.4 kJ/kg , ER=85%).

As can be seen from the Fig. 7. Also increase the effectiveness of the heat exchanger leads to increased specific work, due to increasing the number of layers that passes through it both of exhaust gases and air in the heat exchanger. This in turn leads to a drop in the velocities of each of the exhaust gases and the air passing through these layers, and thus lower of the losses in the pressure from side of the system.
exhaust gases and from side of the air in the heat exchanger, and thus increase the specific work for the cycle.

Fig. 7. Efficiency and specific work as function of Effectiveness of OSF heat exchanger.

Also has been studied the effect of effectiveness of the heat exchanger on the size of the heat exchanger used. Fig. 8. Shows that increasing the effectiveness of the heat exchanger leads to increase the size of the heat exchanger.

Fig. 8. The size at different values of Effectiveness.

Also has been studied the effect of turbine inlet temperature TIT on the thermal efficiency for the combined cycle and simple cycle at different pressure ratios as shown in Fig. 9. Where notes that by increasing the TIT, leads to increases thermal efficiency for both simple cycle and combined cycle, also notes that increasing the pressure ratio increases the thermal efficiency of simple cycle and combined cycle.

Fig. 9. Comparison between efficiency of simple and combined cycle.

V. CONCLUSIONS

The conclusion is that the convert industrial gas turbines into combined Joule/Joule cycle is an economical alternative for power generation. The pressure ratio was found optimal at 15 in topping cycle and 4.5 in bottoming cycle. A recuperator is recommended instead of a regenerator for the heat transfer from the gas turbine exhaust gas to the compressed air of the ABC. The combined Joule/Joule cycle efficiency was calculated to 43.5 percent. The simple cycle gas turbine efficiency was calculated to 36 percent thus Implementation of the air bottoming cycle at a gas turbine adds 7.5 percent points to the simple cycle efficiency, and a rise in the power output of 20.5 to 32 percent depending on the compression ratio.

When compared with the steam bottoming cycle, the ABC showed performance values close to and exceeding those of the steam bottoming cycle, while featuring a simpler and robust design, smaller dimensions, this combined system is very much less costly than that using steam by dispensing with boiler, steam turbine, condenser, pumps, water treatment plant, cooling towers, etc.

ACKNOWLEDGMENT

To the University of Misurata to support this work.

REFERENCES